Technique for Video Laryngoscopy

Overview

Laryngoscopy had until recently remained relatively unchanged since the introduction of the Macintosh and Miller blades in the 1940’s. Advancements in fiberoptic technology have led to the development of multiple novel devices obviating line-of-sight requirements for direct laryngoscopy which may aid with endotracheal intubation in some populations. While there is no evidence to suggest that video laryngoscopy improves patient-centered outcomes, familiarity with the technique of video laryngoscopy is a critical educational objective for trainees who should be comfortable in the use of this and other rescue airway management adjuncts.

The image above shows a comparison of the curvature of straight (Miller), curved (Macintosh) and hyperangulated blades relative to the oral, pharyngeal and laryngeal axes. The hyperangulated blade easily positions a fiberoptic camera over the glottic opening, allowing easy visualization of the vocal cords. Passing the endotracheal tube without direct line-of-sight becomes the challenge of intubation.

The purpose of this guide is to explore the differences in technique for performing video laryngoscopy compared to direct laryngoscopy. Specifically, the guide is focused on video laryngoscopes with hyper-angulated blades (Verathon Glidescope, Storz C-MAC D-Blade) as these devices pose more challenges for appropriate use while potentially offering the greatest advantages for glottic visualization in challenging airway management.


Advantages and Disadvantages

Advantages1

  • Improved glottic visualization especially in scenarios with limited neck mobility as there is no need to align the oral-pharyngeal-laryngeal axes.
  • Allows others to view the screen and facilitate endotracheal intubation.

Disadvantages1

  • Difficulty passing endotracheal tube despite improved glottic visualization.
  • Obscured view by fogging or contaminated airway (blood, secretions, vomit).
  • Possibility for deterioration of skills in direct laryngoscopy.

Technique

Blade Insertion

Because of it’s unique shape, special care should be taken when inserting a hyperangulated blade to avoid dental/oropharyngeal injury. The handle of the blade may need to be angled towards the patient’s chest and turned slightly to facilitate atraumatic insertion.

Blade Advancement

Transition to viewing the screen once the tip of the blade is past the visualized posterior portion of the tongue. Advance the blade along the base of the tongue while monitoring the view on screen. Identify the epiglottis and guide the tip of the blade into the vallecula, the objective is to center the glottic aperture in the upper 2/3 of the screen.

Optimal View

The optimal view shows the vocal cords centered in the upper 2/3 of the screen. This provides adequate screen “real estate” to show the endotracheal tube entering the screen and provide more visual feedback as the tube position is manipulated.

Blade Adjustment

The shape of the hyperangulated blade means that visualizing the airway is less dependent on the lifting motion applied with direct laryngoscopy. Instead, angulating the tip of the blade upward by gently rocking the handle back (taking great care to avoid dental/oropharyngeal trauma) will dramatically improve the view.

Endotracheal Tube Insertion

Directly visualize the insertion of the endotracheal tube into the oral cavity. The endotracheal tube should be loaded with an appropriately angulated rigid stylet. Follow the curvature of the laryngoscope blade entering from the right corner of the mouth. When the endotracheal tube is passed along the edge of the laryngoscope blade, few adjustments will be required for successful endotracheal intubation.

Endotracheal Tube Position Adjustments

If the view is optimized but the endotracheal tube is off-center and does not directly pass the vocal cords into the trachea, subtle adjustments to the endotracheal tube can help guide it into position. Hold the endotracheal tube like a pencil, turning it slightly clockwise or counter-clockwise between your index finger and thumb to manipulate the distal tip left or right above the laryngeal opening.

Stylet Removal

Once past the vocal cords, the hyperangulated rigid stylet will limit continued passage of the endotracheal tube into the trachea as it will get stuck on the anterior surface of the trachea. To facilitate easy passage into the trachea, the stylet should be pulled back slightly to allow passage into the trachea before being fully removed and the tube secured in position.


Review of Evidence

Emergency Department:

  • C-MAC associated with higher rate of successful intubation and greater proportion of grade I-II Cormack-Lehane views compared to direct laryngoscopy.5
  • Glidescope associated with higher rate of successful intubation (and fewer esophageal complications) compared to direct laryngoscopy. 6
  • Glidescope associated with higher rate of successful intubation compared to direct laryngoscopy. 7

Adjustments to Challenging Tube Placement:

  • Combination of flexible-tipped endotracheal tube with rigid stylet (Verathon GlideRight stylet) may increase intubation success.8
  • No apparent benefit to “reverse camber” loading of stylet into endotracheal tube. Reverse camber loading references placing the angled stylet 180° opposite to the natural curvature of the endotracheal tube.9
  • If a malleable stylet is used, 90° angulation was associated with higher rates of successful intubation. 10

Recent Data:

  • Propensity score-matched analysis of multicenter emergency department airway registry – no significant difference in rates of successful intubation comparing Glidescope to direct laryngoscopy. 11
  • Randomized trial comparing direct and video laryngoscopy using C-MAC showed no difference in rates of successful intubation, duration of intubation attempt, aspiration events or length of hospitalization. For interventions randomized to direct laryngoscopy, the video laryngoscope screen was covered. 12

Meta-Analyses:

  • Meta-analysis (predominantly for intubations in the operating room) suggests video laryngoscopy associated with fewer failed intubations, particularly among patients with anticipated difficult airway. Insufficient evidence to analyze effects on incidence of hypoxia, respiratory complications, time to intubation, or mortality.13

References

  1. Maldini B, Hodžović I, Goranović T, Mesarić J. CHALLENGES IN THE USE OF VIDEO LARYNGOSCOPES. Acta Clin Croat. 2016;55 Suppl 1:41-50. doi:10.20471/acc.2016.55.s1.05.
  2. Levitan RM, Heitz JW, Sweeney M, Cooper RM. The complexities of tracheal intubation with direct laryngoscopy and alternative intubation devices. Ann Emerg Med. 2011;57(3):240-247. doi:10.1016/j.annemergmed.2010.05.035.
  3. Hurford WE. The video revolution: a new view of laryngoscopy. Respir Care. 2010;55(8):1036-1045.
  4. Cheyne DR, Doyle P. Advances in laryngoscopy: rigid indirect laryngoscopy. F1000 Med Rep. 2010;2:61. doi:10.3410/M2-61.
  5. Sakles JC, Mosier J, Chiu S, Cosentino M, Kalin L. A Comparison of the C-MAC Video Laryngoscope to the Macintosh Direct Laryngoscope for Intubation in the Emergency Department. Ann Emerg Med. 2012;60(6):739-748. doi:10.1016/j.annemergmed.2012.03.031.
  6. Sakles JC, Mosier JM, Chiu S, Keim SM. Tracheal Intubation in the Emergency Department: A Comparison of GlideScope® Video Laryngoscopy to Direct Laryngoscopy in 822 Intubations. J Emerg Med. 2012;42(4):400-405. doi:10.1016/j.jemermed.2011.05.019.
  7. MD JMM, MPH USP, BA SC, MD JCS. Difficult Airway Management in the Emergency Department: GlideScope Videolaryngoscopy Compared to Direct Laryngoscopy. J Emerg Med. 2012;42(6):629-634. doi:10.1016/j.jemermed.2011.06.007.
  8. Radesic BP, Winkelman C, Einsporn R, Kless J. Ease of intubation with the Parker Flex-Tip or a standard Mallinckrodt endotracheal tube using a video laryngoscope (GlideScope). AANA J. 2012;80(5):363-372.
  9. Jones PM, Turkstra TP, Armstrong KP, et al. Effect of stylet angulation and endotracheal tube camber on time to intubation with the GlideScope. Can J Anesth/J Can Anesth. 2007;54(1):21-27.
  10. Turkstra TP, Harle CC, Armstrong KP, et al. The GlideScope-specific rigid stylet and standard malleable stylet are equally effective for GlideScope use. Can J Anesth/J Can Anesth. 2007;54(11):891-896.
  11. Choi HJ, Kim Y-M, Oh YM, et al. GlideScope video laryngoscopy versus direct laryngoscopy in the emergency department: a propensity score-matched analysis. BMJ Open. 2015;5(5):e007884-e007884. doi:10.1136/bmjopen-2015-007884.
  12. Driver BE, Prekker ME, Moore JC, Schick AL, Reardon RF, Miner JR. Direct Versus Video Laryngoscopy Using the C-MAC for Tracheal Intubation in the Emergency Department, a Randomized Controlled Trial. Acad Emerg Med. 2016;23(4):433-439. doi:10.1111/acem.12933.
  13. Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;11:CD011136. doi:10.1002/14651858.CD011136.pub2.

ECG Guide: Part II

STEMI

STEMI

  • ST-segment elevation ≥ 1mm in two contiguous leads
  • : ≥ 2mm V2-V3
  • : ≥ 1.5mm V2-V3

Posterior STEMI

  • ST-segment depression V1-V3 Posterior ECG
  • ST-segment elevation ≥ 0.5mm in V7-V9

Sgarbossa Criteria

  • Evaluation for STEMI in LBBB or paced rhythm
  • Normal: ST-segment discordant with QRS

    • QRS associated with ST-segment depression
    • QRS associated with (commensurate) ST-segment elevation
  • Score ≥ 3 98% specific for MI

Elevation

  • Concordant ST-segment elevation ≥ 1mm in any lead (5 points)

Depression

  • Concordant ST-segment depression ≥ 1mm in V1-V3 (3 points)

Discordant Elevation

  • Discordant ST-segment elevation ≥ 5mm in any lead (2 points)

Modified Sgarbossa Criteria

  • ST:S ratio ≥ 0.25 in any lead
  • Presence of any criterion is positive

Other Causes of ST-segment Elevation

Benign Early Repolarization

  • Concave ST-segment elevation
  • Notch at J-point
  • Asymmetric T-waves (steeper descent)

Pericarditis

  • Diffuse ST-segment elevation (except aVR)
  • PR-segment depression
  • Ratio: ST-elevation to T-wave amplitude ≥ 0.25 in V6 suggests pericarditis

LVH Strain

  • ST-segment elevation in V1-V3 in the setting of LVH

LV Aneurysm

  • Q-waves with ST-segment elevation in precordial leads

Ischemia and Prior Infarcts

Wellens: Type A

Wellens: Type B

Q-waves

  • ≥ 40ms duration
  • Depth ≥ 25% of R-wave height

Syncope

ARVD

  • Epsilon wave

Brugada Syndrome: Type 1

  • Type 1: Coved ST-segment elevation

Brugada Syndrome: Type 2

  • Type 2: Saddle-back ST-segment elevation

HCM

  • Deep, narrow Q-waves

Wolff-Parkinson-White

  • Shortened PR-interval
  • Delta-wave

Other

Atrial Abnormalities

  1. Normal
  2. RAA: P-wave amplitude > 2.5mm in inferior leads
  3. LAA: P-wave duration increased (terminal negative portion >0.04s), amplitude of terminal negative component >1mm below isoelectric line in V1

Left Bundle Branch Block


  • QRS duration > 0.12s (3 boxes)
  • Broad or notched R-wave with prolonged upstroke in I, aVL, V5, V6
  • Associated ST-segment depression and T-wave inversion
  • Reciprocal changes in V1, V2 (deep S-wave)
  • Possible LAD

Right Bundle Branch Block


  • QRS duration > 0.12s (3 boxes)
  • RSR’ in V1, V2
  • Reciprocal changes in I, aVL, V5, V6 (deep S-wave)

Axes

All illustrations are available for free, licensed (along with all content on this site) under Creative Commons Attribution-ShareAlike 4.0 International Public License.

Downloads Page License

CT Interpretation: Head

The emergency physician should be adept at the interpretation of computed tomography of the head, particularly for life-threatening processes where awaiting a radiologist interpretation may unnecessarily delay care.

As with the approach detailed previously for imaging of the abdomen and pelvis, a similar structured method for interpretation of head imaging exists and follows the mnemonic “Blood Can Be Very Bad”.

Normal Neuroanatomy

Brainstem
Posterior Fossa
High Pons
Cisterns
Ventricles

Blood: Blood

Density
Acute: hyperdense (50-100HU)
1-2wks: isodense with brain
2-3wks: hypodense with brain

Types/Locations

Intraparenchymal Hemorrhage/Contusions
Sudden deceleration of the head causes the brain to impact on bony prominences (e.g., temporal, frontal, occipital poles).
Non-traumatic hemorrhagic lesions seen more frequently in elderly and located in basal ganglia.
Intraventricular Hemorrhage
White density in otherwise black ventricular spaces, can lead to obstructive hydrocephalus and elevated ICP.
Associated with worse prognosis in trauma.
Subarachnoid Hemorrhage
Hemorrhage into subarachnoid space usually filled with CSF (cistern, brain convexity).
Extracranial Hemorrhage
Presence of significant extracranial blood or soft-tissue swelling should point examiner to evaluation of underlying brain parenchyma, opposing brain parenchyma (for contrecoup injuries) and underlying bone for identification of fractures.

Can: Cisterns


Evaluating the cisterns is important for the identification of increased intracranial pressures (assessed by effacement of spaces) and presence of subarachnoid blood.

  • Circummesencephalic: CSF ring around midbrain and most sensitive marker for elevated ICP
  • Suprasellar: Star-shaped space above the sella
  • Quadrigeminal: W-shaped space at the top of the midbrain
  • Sylvian: Bilateral space between temporal/frontal lobes

Be: Brain

Evaluate the brain parenchyma, including an assessment of symmetry of the gyri/sulci pattern, midline shift, and a clear gray-white differentiation.

Very: Ventricles

Evaluate the ventricles for dilation or compression. Compare the ventricle size to the size of cisterns, large ventricles with normal/compressed cisterns and sulcal spaces suggests obstruction.

Bad: Bone

Switch to bone windows to evaluate for fracture. The identification of small, linear, non-depressed skull fractures may be difficult to identify as they are often confused with sutures – surrogates include pneumocephalus, and abnormal aeration of mastoid air cells and sinuses. The Presence of fractures increases the suspicion for intracranial injury, search adjacent and opposing parenchyma and extra-axial spaces.

Example #1

ct-mass_01
ct-mass_01
ct-mass_02
ct-mass_02
ct-mass_03
ct-mass_03
ct-mass_04
ct-mass_04
ct-mass_05
ct-mass_05
ct-mass_06
ct-mass_06
ct-mass_07
ct-mass_07
ct-mass_08
ct-mass_08
ct-mass_09
ct-mass_09
ct-mass_10
ct-mass_10
ct-mass_11
ct-mass_11
ct-mass_12
ct-mass_12
ct-mass_13
ct-mass_13
ct-mass_14
ct-mass_14
ct-mass_15
ct-mass_15
ct-mass_16
ct-mass_16
ct-mass_17
ct-mass_17
ct-mass_18
ct-mass_18
ct-mass_19
ct-mass_19
ct-mass_20
ct-mass_20
ct-mass_21
ct-mass_21
ct-mass_22
ct-mass_22
ct-mass_23
ct-mass_23
ct-mass_24
ct-mass_24

CT Head Interpretation

  • Ill-defined lesion in right parietal white matter with a large amount of surrounding vasogenic edema with midline shift and right uncal herniation.
  • Acute on subacute right extra-axial subdural hematoma.
  • Effacement of basilar cisterns.

Example #2

ct-sdh_01
ct-sdh_01
ct-sdh_02
ct-sdh_02
ct-sdh_03
ct-sdh_03
ct-sdh_04
ct-sdh_04
ct-sdh_05
ct-sdh_05
ct-sdh_06
ct-sdh_06
ct-sdh_07
ct-sdh_07
ct-sdh_08
ct-sdh_08
ct-sdh_09
ct-sdh_09
ct-sdh_10
ct-sdh_10
ct-sdh_11
ct-sdh_11
ct-sdh_12
ct-sdh_12
ct-sdh_13
ct-sdh_13
ct-sdh_14
ct-sdh_14
ct-sdh_15
ct-sdh_15
ct-sdh_16
ct-sdh_16
ct-sdh_17
ct-sdh_17
ct-sdh_18
ct-sdh_18
ct-sdh_19
ct-sdh_19
ct-sdh_20
ct-sdh_20
ct-sdh_21
ct-sdh_21

CT Head Interpretation

  • Bilateral subacute subdural hematomas, left larger than right and associated with rightward midline shift.
  • Left lateral ventricle is partially effaced.

Example #3

ct-trauma_01
ct-trauma_01
ct-trauma_02
ct-trauma_02
ct-trauma_03
ct-trauma_03
ct-trauma_04
ct-trauma_04
ct-trauma_05
ct-trauma_05
ct-trauma_06
ct-trauma_06
ct-trauma_07
ct-trauma_07
ct-trauma_08
ct-trauma_08
ct-trauma_09
ct-trauma_09
ct-trauma_10
ct-trauma_10
ct-trauma_11
ct-trauma_11
ct-trauma_12
ct-trauma_12
ct-trauma_13
ct-trauma_13
ct-trauma_14
ct-trauma_14
ct-trauma_15
ct-trauma_15
ct-trauma_16
ct-trauma_16
ct-trauma_17
ct-trauma_17
ct-trauma_18
ct-trauma_18
ct-trauma_19
ct-trauma_19
ct-trauma_20
ct-trauma_20
ct-trauma_21
ct-trauma_21
ct-trauma_22
ct-trauma_22
ct-trauma_23
ct-trauma_23
ct-trauma_24
ct-trauma_24
ct-trauma_25
ct-trauma_25

CT Head Interpretation

Subdural hematoma with significant herniation

References

  1. Perron A. How to read a head CT scan. Emergency Medicine. 2008.
  2. Arhami Dolatabadi A, Baratloo A, Rouhipour A, et al. Interpretation of Computed Tomography of the Head: Emergency Physicians versus Radiologists. Trauma Mon. 2013;18(2):86–89. doi:10.5812/traumamon.12023.

Sickle Cell Crises

Brief H&P

A 27 year-old male with sickle cell disease (HbSC) on hydroxurea and with a history of 2-3 hospitalizations per year for vaso-occlusive pain crises manifested by arthralgias and back pain presents to the emergency department with 3 days of worsening joint pain affecting his entire body but predominantly his knees and lower back. He is familiar with this pain and attempted therapy at home with ibuprofen, then hydrocodone-acetaminophen, and finally hydromorphone without improvement and presented to the emergency department.

On review of systems, he denied chest pain, cough, or shortness of breath. He has some periumbilical abdominal pain but tolerated normal oral intake on the day of presentation without vomiting nor changes in bowel habits. He otherwise denied fevers, peripheral numbness/weakness, urinary or fecal incontinence or retention. He similarly denies trauma, weight loss, night sweats, or intravenous drug use.

Objectively, the patient’s vital signs were normal and he was well-appearing. Mucous membranes were moist and skin turgor was normal. There were no appreciable joint effusions, warmth, nor limitation to active/passive range of motion of any joints. His back had no midline tenderness to palpation or percussion, normal range of motion in all axes and extremity sensation and strength testing were normal. Abdominal and genitourinary examinations were normal. The patient had preserved perineal sensation to light touch and normal rectal tone – a core temperature was obtained which was also normal.

Peripheral access was established and a parenteral dose of hydromorphone equivalent to his home oral dose was administered (0.015mg/kg). Repeat dosing was required at 15 minutes due to persistent pain scale of 10. Diphenhydramine and acetaminophen were also administered, for potential opioid-sparing effects, recognizing the limited evidence to support these relatively benign adjuncts.

Laboratory studies were notable for anemia (though stable compared to baseline measures), appropriate reticulocyte count, no evidence of hemolysis and with normal electrolytes and renal function.

A thorough history and examination did not identify a critical precipitant for the patient’s symptoms which were presumed to be secondary to a vaso-occlusive pain crisis. On reassessment, the patient’s pain was improved and an oral dose of hydromorphone was administered with continued observation and serial reassessments for two hours thereafter. The patient’s hematologist was available for follow-up the subsequent morning and the patient was discharged home.

Pharmacokinetics of Commonly-Used Opiate Analgesics1-3

Medication Route Onset Peak Duration
Morphine IV 5-10min 20min 3-5h
IM 15-30min 30-60min
PO 30min 1h
Oxycodone PO 10-15min 30-60min 3-6h
Hydrocodone PO 10-20min 4-8h
Fentanyl IV <1min 2-5min 30-60min
Hydromorphone IV 5min 10-20min 3-4h
PO 15-30min 30-60min
Codeine PO 30-60min 60-90min 4-6h

Spectrum of Sickle Cell Trait and Disease4

Algorithm for the Evaluation and Management of Sickle Cell Crises4-10

Algorithm for the Management of Sickle Cell Crises

References:

  1. Lexicomp Online®, Adult Drug Information, Hudson, Ohio: Lexi-Comp, Inc.; November 4, 2017.
  2. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician. 2008;11(2 Suppl):S133-S153.
  3. Vieweg WVR, Lipps WFC, Fernandez A. Opioids and methadone equivalents for clinicians. Prim Care Companion J Clin Psychiatry. 2005;7(3):86-88.
  4. Glassberg J. Evidence-based management of sickle cell disease in the emergency department. Emergency Medicine Practice. 2011;13(8):1–20–quiz20.
  5. Raam R, Mallemat H, Jhun P, Herbert M. Sickle Cell Crisis and You: A How-to Guide. Ann Emerg Med. 2016;67(6):787-790. doi:10.1016/j.annemergmed.2016.04.016.
  6. Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017;376(16):1561-1573. doi:10.1056/NEJMra1510865.
  7. Lovett PB, Sule HP, Lopez BL. Sickle cell disease in the emergency department. Emerg Med Clin North Am. 2014;32(3):629-647. doi:10.1016/j.emc.2014.04.011.
  8. Yawn BP, John-Sowah J. Management of Sickle Cell Disease: Recommendations From the 2014 Expert Panel Report. Vol 92. 2015:1069-1076.
  9. Zempsky WT. Evaluation and Treatment of Sickle Cell Pain in the Emergency Department: Paths to a Better Future. Clinical Pediatric Emergency Medicine. 2010;11(4):265-273. doi:10.1016/j.cpem.2010.09.002.
  10. Aliyu ZY, Tumblin AR, Kato GJ. Current therapy of sickle cell disease. Haematologica. 2006;91(1):7-10.

CT Interpretation: Abdomen/Pelvis

As with the systematic approach preferred for the evaluation and management of other processes explored on this site, a similarly structured method for the interpretation of imaging commonly obtained in the emergency department may afford the same benefits – namely, the timely identification of pathology while avoiding costly missed diagnoses. In this post, I propose an approach to the interpretation of computed tomography of the abdomen and pelvis.

Aorta Down

Thoracic Aorta

Thoracic Aorta

Start with the descending thoracic aorta

Abdominal Aorta

Abdominal Aorta

Follow the abdominal aorta down including its branches (celiac, SMA, paired renal arteries, IMA)

Aortic Bifurcation

Aortic Bifurcation

Continue to the bifurcation of the abdominal aorta to the left and right common iliac arteries

Veins Up

Femoral Veins

Femoral Veins

Start with the left and right femoral veins

Inferior Vena Cava

Inferior Vena Cava

Follow the inferior vena cava up

Infrahepatic IVC

Infrahepatic IVC

The inferior vena cava gains contrast from the renal veins

Right Atrium

Right Atrium

The inferior vena cava empties into the right atrium

Solid Organs Down

Heart and Pericardium

Heart and Pericardium

Evaluate for the presence of a pericardial effusion or cardiomegaly

Spleen

Spleen

Heterogenous contrast-enhancement is normal

Pancreas

Pancreas

The tail of the pancreas lies in the hilum of the spleen

Liver

Liver

Evaluate the intrahepatic bile ducts for dilation or pneumobilia, portal venous system for gas, and liver parenchyma for vascular abnormalities or abscesses

Gallbladder

Gallbladder

Evaluate for radioopaque stones, pericholecystic fluid or surrounding fat stranding

Adrenal

Adrenal

A wishbone-shaped structure superior to the kidneys

Kidney and Ureter

Kidney and Ureter

Evaluate for hydronephrosis or hydroureter

Bladder

Bladder

Continue down into the pelvis; in a female patient the evaluation should include the uterus and adnexa

Rectum Up

Rectum

Rectum

Having reached the inferior-most portion of the image following solid organs, move upward again from the rectum

Sigmoid

Sigmoid

Evaluate the sigmoid colon for diverticulitis

Transverse

Transverse

Continue following the sigmoid colon up the descending colon to the transverse colon and the hepatic flexure

Cecum

Cecum

Continue down the ascending colon to the cecum

Appendix

Appendix

At the cecum, attempt to identify a small tubular structure (the appendix) - evaluate for periappendiceal fat stranding, perforation or abscess

Esophagus Down

Esophagus

Esophagus

Start at the esophagus, evaluate for perforation or hernia

Stomach

Stomach

Continue to the stomach and duodenum

Small Bowel

Small Bowel

Evaluate the small bowel for obstruction (dilation, air-fluid levels)

Tissue-specific Windows

Lung Window

Lung Window

Switch to lung window to evaluate the lung parenchyma and continue through the abdomen to identify intraperitoneal free air

Bone Window

Bone Window

Use the bone window to identify fractures or lytic lesions

Try It Yourself

ct_annotation_01
ct_annotation_01
ct_annotation_02
ct_annotation_02
ct_annotation_03
ct_annotation_03
ct_annotation_04
ct_annotation_04
ct_annotation_05
ct_annotation_05
ct_annotation_06
ct_annotation_06
ct_annotation_07
ct_annotation_07
ct_annotation_08
ct_annotation_08
ct_annotation_09
ct_annotation_09
ct_annotation_10
ct_annotation_10
ct_annotation_11
ct_annotation_11
ct_annotation_12
ct_annotation_12
ct_annotation_13
ct_annotation_13
ct_annotation_14
ct_annotation_14
ct_annotation_15
ct_annotation_15
ct_annotation_16
ct_annotation_16
ct_annotation_17
ct_annotation_17
ct_annotation_18
ct_annotation_18
ct_annotation_19
ct_annotation_19
ct_annotation_20
ct_annotation_20
ct_annotation_21
ct_annotation_21

CT Abdomen/Pelvis Interpretation

  • Cystic lesion in the inferior right lobe of the liver most consistent with hepatic abscess.
  • Multiple calcified gallstones in the gallbladder.

Pneumobilia: Hepatic Gas Applied

Brief HPI

A 45 year-old female with a history of pre-diabetes and gastroesophageal reflux disease presents with 3 days of epigastric abdominal pain. She describes constant, burning abdominal pain which worsened on the day of presentation associated with two episodes of non-bloody and non-bilious emesis. The patient was tender to palpation in the epigastrium and right upper quadrant.

Right upper quadrant ultrasound

Laboratory studies were largely normal. A complete blood count demonstrated minimal leukocytosis (11.6 with normal differential), and liver function tests were normal.

A right-upper quadrant ultrasound was obtained which demonstrated “strongly shadowing structures in the gallbladder fossa which might represent a wall-echo-shadow, calcified gallbladder wall, or air within the gallbladder”.

The patient underwent contrast-enhanced computed tomography of the abdomen and pelvis which is shown below.

Imaging

cyst-gastric_01
cyst-gastric_01
cyst-gastric_02
cyst-gastric_02
cyst-gastric_03
cyst-gastric_03
cyst-gastric_04
cyst-gastric_04
cyst-gastric_05
cyst-gastric_05
cyst-gastric_06
cyst-gastric_06
cyst-gastric_07
cyst-gastric_07
cyst-gastric_08
cyst-gastric_08
cyst-gastric_09
cyst-gastric_09
cyst-gastric_10
cyst-gastric_10
cyst-gastric_11
cyst-gastric_11
cyst-gastric_12
cyst-gastric_12
cyst-gastric_13
cyst-gastric_13
cyst-gastric_14
cyst-gastric_14
cyst-gastric_15
cyst-gastric_15

CT Abdomen/Pelvis with Contrast

Pneumobilia, intra- and extra-hepatic biliary duct dilation, pericholecystic fat stranding, and an air-fluid level within a contracted gallbladder. Mildly dilated loops of ileal bowel with a possible transition point in the right lower quadrant. Findings suggestive of possible gallstone ileus.

The patient was taken to the operating room for exploratory laparotomy, possible cholecystectomy and possible small bowel resection for presumed gallstone ileus. Intra-operative findings were notable for a cholecystogastric fistula which was repaired.

Differentiation between Portal Venous Gas and Pneumobilia

The patient’s CT demonstrated mostly central hepatic gas. This finding combined with the presence of an air-fluid level in the gallbladder was most consistent with pneumobilia. This case demonstrates an application of the previously-developed algorithm for the evaluation of hepatic gas in a relatively unique pathologic process.
Hepatic Gas: Pneumobilia  vs. Portal Venous Gas

Dermatologic Emergencies

Brief H&P

A 68 year-old male with hypertension and gout presents with rash for 2-3 weeks. He note some subjective fevers but is otherwise asymptomatic. He denies recent travel or sick contacts. When asked about his medications, he reports that his primary care provider started him on allopurinol approximately two months ago.

He first noted the rash on his face, characterizing it as “pimples” which were slightly pruritic. The lesions subsequently spread to his trunk and extremities and have been growing in size.

Objectively, vital signs were notable for fever (38.2°C) and tachycardia (108bpm). Examination demonstrated diffuse blanching erythema most prominent on the trunk and extremities. The remainder of the physical examination was normal. Laboratory studies were obtained and notable for a complete blood count (CBC) with peripheral eosinophilia, as well as mildly elevated serum transaminases.

The patient was diagnosed with Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), likely owing to the initiation of a xanthine oxidase inhibitor. He improved after withdrawal of the drug and a brief course of systemic corticosteroids.


Principles of Dermatologic Emergencies

Critical dermatologic processes can be broadly divided into two categories:

1. Cutaneous manifestation of critical illness

The presence of a dermatologic abnormality does not itself represent a life-threat. Instead, the skin lesion is a signal suggestive of the presence of an underlying critical process. The prototypical example would be the petechiae/purpura in meningococcemia.

2. Acute Skin Failure

As with any other organ system failure, Acute Skin Failure carries significant morbidity and mortality and is characterized by derangements in normal skin function.

Critical functions of skin
Temperature regulation
Protection against excess fluid loss
Mechanical barrier to prevent penetration of foreign materials
Important pathophysiologic changes in ASF
Increased peripheral vasodilation (dramatic increase in cardiac output to low-resistance circuits) and increased vascular permeability resulting in relative hypovolemia and shock.
Increased blood flow and dysfunction of eccrine sweat glands results in altered temperature regulation (usually hypothermia)
Fluid imbalances occur, similar to burns (transepidermal water loss) which varies in quality somewhat between “dry” (erythroderma) and “wet” (vesiculobullous) diseases
Electrolytes: increased basal metabolic rate, hyperglycemia (insulin resistance), hypophosphatemia, protein depletion
Barrier dysfunction: increased risk of infection
Management
Intensive Care Unit: Dermatologic (DICU) or Burn Center preferred
Treatment: Temperature management, early enteral nutrition, fluid/electrolyte management, local wound care, disease-specific management
Complications: Sepsis/shock, ARDS, high-output CHF, known complications of critical illness (multi-organ failure, GI ulcers, VTE)
Long-term complications: occular (ectropion, keratitis, ulcer), esophageal (stricture), GU (urethral stricture, phimosis, vaginal stenosis), Integumentary (scarring, alopecia)

Skin Lesions and their Pathophysiology

The objective of this algorithm is to develop a systematic approach to the evaluation of dermatologic processes with a focus on the identification of dermatologic emergencies. The foundation of this approach is an understanding of the underlying pathophysiologic mechanisms for each of four broad categories of dermatologic processes which guide the resultant differential diagnosis.

Erythroderma

Pathophysiology
Extensive cutaneous capillary dilation, results in widespread exfoliation of the epidermis
Inflammatory mediators result in dramatic increase of epidermal turnover rate, accelerated mitotic rate, increased number of germinative skin cells.
Causes
Exfoliative toxin
Eosinophils
Basophils/Histamine
Skin-homing T-cells

View Erythroderma Algorithm

Petechiae/Purpura

Pathophysiology
Represent the passage of erythrocytes from the intravascular to extravascular compartment
May be the result of disruption of vascular integrity (trauma, infection, vasculitis) or disorders of primary or secondary hemostasis
Palpable
If lesions are palpable, this may suggest a more prominent underlying inflammatory process such as vasculiitis.
When cutaneous manifestations are identified, other small vessels may be affected (commonly renal and pulmonary

View Petechiae/Purpura Algorithm

Fluid-filled

Pustule
Pustules more commonly suggest an infectious process (bacterial, fungal)
Vesiculobullous
Vesiculobullous lesions are generally more concerning
Loss of basic structural elements maintaining cohesion between keratinocytes in the epidermis, or between the epidermal layer and the dermis (near basement membrane zone).
Intraepidermal blisters tend to be flaccid, fragile and thin-roofed.
Subepidermal blisters have a thick roof and can remain intact when compressed
Often due to autoantibodies targeting structural proteins in the skin.

View Fluid-filled Algorithm

Maculopapular

Pathophysiology
Catch-all term with a wide range of potential pathophysiologic mechanisms and causative etiologies.
Any process that results in erythroderma, petechiae, or fluid-filled lesions may start as a macule or papule.
Pathophysiology is of little guidance in this category where we must instead rely on the patient’s history and identification of red-flags to exclude dermatologic emergencies.
High-risk Features (Identified by dermatologists to stratify urgency of inpatient consultations):
Ill-appearing, vital sign instability
New-onset fever with rash
Mucocutaneous or ocular lesions
Recent introduction of anti-convulsant or sulfa-drug
Skin pain
Immunocompromised

View Maculopapular Algorithm

Algorithm for the Evaluation of Dermatologic Processes

Algorithm for the Evaluation of Dermatologic Processes
An algorithm for the evaluation of dermatologic processes was developed initially by Lynch in 1984. Since then, several modified Lynch algorithms have emerged. The concept of an algorithmic approach to dermatologic diagnosis was further expanded with the development of VisualDx, a decision-support application. There is evidence to suggest that the use of algorithms and decision support tools like VisualDx (and by extension this algorithm) may aid with the development of more thorough differential diagnoses and improve diagnostic accuracy.


References

Reviews

  1. Wolf R, Parish LC, Parish JL. Emergency Dermatology, Second Edition. August 2017:1-369.
  2. Usatine RP, Sandy N. Dermatologic emergencies. Am Fam Physician. 2010;82(7):773-780.
  3. Shilpi Khetarpal MD, Anthony Fernandez MP. Dermatological Emergencies. Cleveland Clinic. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/dermatology/dermatological-emergencies/. Published August 2014. Accessed August 5, 2017.
  4. McQueen A, Martin SA, Lio PA. Derm emergencies: detecting early signs of trouble. J Fam Pract. 2012;61(2):71-78.
  5. Browne BJ, Edwards B, Rogers RL. Dermatologic emergencies. Prim Care. 2006;33(3):685–95–vi. doi:10.1016/j.pop.2006.06.002.
  6. Drage LA. Life-threatening rashes: dermatologic signs of four infectious diseases. Mayo Clinic Proceedings. 1999;74(1):68-72. doi:10.4065/74.1.68.
  7. Baibergenova A, Shear NH. Skin conditions that bring patients to emergency departments. Arch Dermatol. 2011;147(1):118-120. doi:10.1001/archdermatol.2010.246.

Erythroderma

  1. Tan TL, Chung WM. A case series of dermatological emergencies – Erythroderma. Med J Malaysia. 2017;72(2):141-143.
  2. Karakayli G, Beckham G, Orengo I, Rosen T. Exfoliative dermatitis. Am Fam Physician. 1999;59(3):625-630.

Petechiae/Purpura

  1. Stevens GL, Adelman HM, Wallach PM. Palpable purpura: an algorithmic approach. Am Fam Physician. 1995;52(5):1355-1362.

Algorithms

  1. Lynch PJ, Edminster SC. Dermatology for the nondermatologist: a problem-oriented system. YMEM. 1984;13(8):603-606.
  2. Nguyen T, Freedman J. Dermatologic Emergencies: Diagnosing And Managing Life-Threatening Rashes. Emergency Medicine Practice. 2002;4(9):1-28.
  3. Murphy-Lavoie H, LeGros TL. Emergent Diagnosis of the Unknown Rash: an Algorithmic Approach-Rash Is Among the Top 20 Reasons for ED Visits in the United States. Certain Rashes …. Emergency Medicine; 2010.
  4. Dean S. Emergency Medicine Dermatology. 2017:1-20. doi:10.21980/J8DW21.
  5. Talley NJ, O’Connor S. Clinical Examination. Elsevier Health Sciences; 2013.
  6. Jack AR, Spence AA, Nichols BJ, Peng DH. A simple algorithm for evaluating dermatologic disease in critically ill patients: a study based on retrospective review of medical intensive care unit consults. J Am Acad Dermatol. 2009;61(4):728-730. doi:10.1016/j.jaad.2008.12.025.

DRESS

  1. McQueen A, Martin SA, Lio PA. Derm emergencies: detecting early signs of trouble. J Fam Pract. 2012;61(2):71-78.
  2. Cardoso CS, Vieira AM, Oliveira AP. DRESS syndrome: a case report and literature review. BMJ Case Rep. 2011;2011. doi:10.1136/bcr.02.2011.3898.

Evidence-Based Algorithms

  1. David CV, Chira S, Eells SJ, et al. Diagnostic accuracy in patients admitted to hospitals with cellulitis. Dermatol Online J. 2011;17(3):1.
  2. Chou W-Y, Tien P-T, Lin F-Y, Chiu P-C. Application of visually based, computerised diagnostic decision support system in dermatological medical education: a pilot study. Postgrad Med J. 2017;93(1099):256-259. doi:10.1136/postgradmedj-2016-134328.

Pediatric Foreign Body Ingestion

Brief H&P

XR Chest: Circular radioopaque foreign body likely in the antrum of the stomach.

A healthy 5 year-old boy is brought to the pediatric emergency department after he informed his parents that he accidentally swallowed a coin just prior to presentation. He has no complaints and on evaluation appears to be breathing comfortably and is tolerating secretions normally. A plain radiograph was obtained and is shown below.

The patient remained well-appearing and was discharged with primary care follow-up.


Indications for Emergent Endoscopy

  • Esophageal button battery
  • Severe symptoms
  • Sharp foreign body in esophagus
  • Multiple magnets in esophagus or stomach

Radiographic Findings


Esophageal foreign bodies typically orient coronally. For example, a coin will appear as a circle on an anteroposterior projection.

Tracheal foreign bodies typically orient sagitally. For example a coin will appear as a line on an anteroposterior projection.

Algorithm for the Evaluation and Management of Pediatric Foreign Body Aspiration

Algorithm for the Management of Pediatric Foreign Body Ingestion

References

  1. Sahn, B, et al. Foreign Body Ingestion Clinical Pathway. 1 Aug. 2016, www.chop.edu/clinical-pathway/foreign-body-ingestion-clinical-pathway. Accessed 26 Aug. 2017.
  2. Wyllie R. Foreign bodies in the gastrointestinal tract. Current Opinion in Pediatrics. 2006;18 N2 -(5).
  3. Uyemura MC. Foreign body ingestion in children. Am Fam Physician. 2005;72(2):287-291.
  4. Chung S, Forte V, Campisi P. A Review of Pediatric Foreign Body Ingestion and Management. Vol 11. 2010:225-230.
  5. Louie MC, Bradin S. Foreign Body Ingestion and Aspiration. Pediatrics in Review. 2009;30(8):295-301. doi:10.1542/pir.30-8-295.
  6. Green SS. Ingested and Aspirated Foreign Bodies. Pediatrics in Review. 2015;36(10):430-437. doi:10.1542/pir.36-10-430.

Penetrating Neck Trauma

Brief H&P

A young male presents to the emergency department after a self-inflicted stab wound to the neck. Examination revealed a knife handle protruding from the left lateral neck. A plain radiograph is shown below.

CXR: Radiopaque foreign body in left neck.

The patient was initially stable but developed shortness of breath upon attempting to lie flat for advanced imaging and was taken emergently to the operating room. Neck exploration showed no obvious neurovascular injuries, and the course of the 6cm blade was posterior to the trachea and esophagus. The knife was removed with “considerable force” as it was likely lodged within a portion of vertebral bone. The patient underwent esophagoscopy and bronchoscopy without identified tracheoesophageal injuries. The patient did well post-operatively and was discharged home.

Zones of Injury1-3

Previously, the evaluation and management of hemodynamically stable patients with penetrating neck injury was guided by the anatomic “zone” of injury. The affected zone guided the performance of additional diagnostic procedures including potentially morbid neck explorations.

Neck Zones of Injury

Understanding zone definitions remains important for the emergency physician to appreciate potentially implicated underlying structures. However, the advent of modern imaging modalities, specifically computed tomography with angiography, provides appropriate sensitivity for vascular and tracheoesophageal injuries when combined with detailed physical examination and maintenance of an appropriate threshold for the performance of additional studies if warranted by the clinical presentation (suboptimal imaging, concerning projectile trajectory, etc).

Zone Definition
I Clavicles/sternum to cricoid cartilage
II Cricoid cartilage to the angle of mandible
III Superior to the angle of mandible to the skull base

 

Algorithm for the Evaluation of Penetrating Neck Trauma

 

References

  1. Sperry JL, Moore EE, Coimbra R, et al. Western Trauma Association critical decisions in trauma: penetrating neck trauma. J Trauma Acute Care Surg. 2013;75(6):936-940. doi:10.1097/TA.0b013e31829e20e3.
  2. Brywczynski JJ, Barrett TW, Lyon JA, Cotton BA. Management of penetrating neck injury in the emergency department: a structured literature review. Emerg Med J. 2008;25(11):711-715. doi:10.1136/emj.2008.058792.
  3. Shiroff AM, Gale SC, Martin ND, et al. Penetrating neck trauma: a review of management strategies and discussion of the “No Zone” approach. Am Surg. 2013;79(1):23-29. doi:10.1007/978-3-662-49859-0_29.

 

Principles of Neonatal Resuscitation

The following resource for neonatal resuscitation and neonatal critical care was developed with the guidance of Dr. Agrawal (Neonatology) while on rotation at the White Memorial Medical Center Neonatal Intensive Care Unit.

Endotracheal Tube Size1-3

Simplified Formula
Estimated gestational age in weeks ÷ 10 = round to nearest half-size uncuffed tube

NRP Recommendation

Gestation age (weeks) Weight (kg) ETT Size (ID, mm) Depth (cm from lip)
<28 <1.0 2.5 6-7
28-34 1.0-2.0 3.0 7-8
34-38 2.0-3.0 3.5 8-9
>38 >3.0 3.5-4.0 9-10

Laryngoscope Blade Size

Age Blade
Preterm 0
Term 1

Umbilical Vein Catheter Placement4

ED Indications
Unstable neonate
Contraindications
Omphalocele
Gastroschisis
Necrotizing enterocolitis
Depth
4-5cm or until blood return (for emergent placement)

Umbilical artery/vein catheter position on plain radiograph.

Umbilical catheter size

Weight (kg) Size (F)
<1.5 3.5
1.5-3.5 5
>3.5 8

Umbilical catheter positioning on plain radiographs

Umbilical venous catheter position can be verified with a plain radiograph. Positioning within the umbilical vein can be confirmed by tracing a cephalad trajectory from the insertion point at the umbilicus. An umbilical artery catheter will first pass caudally into the internal iliac artery before travelling cephalad into a common iliac artery and the abdominal aorta.

Medications5

Medication Dose
Epinephrine 0.1mL/kg (1:10,000) IV, 0.01mg/kg
Volume Expansion 10mL/kg (normal saline, blood)
Naloxone 0.1-0.2mg/kg
Dopamine 5-20mcg/kg/min IV infusion

Neonatal Physiology and Transition to Extrauterine Life6

An important principle in neonatal resuscitation is supporting the appropriate transition from intra- to extra-uterine life which is dependent on several key anatomic and physiologic changes occurring in an optimal environment.

Anatomy7

Fetal Circulation
Neonatal Circulation

Fetal Circulation

In the fetal circulatory system, oxygenated blood is delivered via the umbilical vein, entering the inferior vena cava via the ductus venosus. The majority of this oxygenated blood passes through the right atrium and into the left atrium through the foramen ovale to enter the systemic circulation.

Meanwhile, high pulmonary pulmonary vascular resistance (due to hypoxic vasoconstriction in fluid-filled alveoli) means that most of the deoxygenated right ventricular output is routed through the ductus arteriosus and enters into the systemic circulation – mixing with oxygenated blood distal to the highest priority end-organs (brain and heart), to be reoxygenated at the placenta.

Post-transition Circulation

The transition to extra-uterine life involves several key steps detailed below and is supported by appropriate ventilation, oxygenation and temperature regulation.

  1. Alveolar Fluid Clearance
    Catecholamine and hormone changes (predominantly corticosteroids) during the process of labor induce changes in enzymatic expression that result in the resorption of alveolar fluid into the interstitial space. At the time of delivery, negative intra-thoracic pressure from inspiration further promotes the resorption of alveolar fluid. Mechanical thoracic compression from delivery may also contribute.
  2. Respiration and Breathing
    Disconnection from the placenta ceases the transfer of placenta-derived factors including prostaglandins. The withdrawal of tonic inhibition of central respiratory drive from prostaglandins with cord clamping stimulates rhythmic breathing. The infant’s initial breaths and resultant lung expansion promotes alveolar expansion and stimulates surfactant production – this decreases alveolar surface tension, increases lung compliance and further facilitates breathing.
  3. Circulatory Changes
    At delivery, clamping the umbilical cord removes a large bed of low-resistance circulation, increasing systemic vascular resistance and systemic blood pressure. At the same time, lung expansion and alveolar aeration decreases pulmonary vascular resistance and pulmonary arterial pressures. At the ductus arteriosus, increased systemic vascular resistance combined with decreased pulmonary vascular resistance decreases shunting and contributes to closure. Similarly, as left atrial pressure approaches and exceeds right atrial pressure, right-to-left flow across the foramen ovale ceases. Collectively, these changes serve to effectively separate the left- and right-sided circulations.

NRP Resuscitation Algorithm5,8

Neonatal Resuscitation Algorithm

References

  1. Luten R, Kahn N, Wears R, Kissoon N. Predicting Endotracheal Tube Size by Length in Newborns. J Emerg Med. 2007;32(4):343-347. doi:10.1016/j.jemermed.2007.02.035.
  2. Peterson J, Johnson N, Deakins K, Wilson-Costello D, Jelovsek JE, Chatburn R. Accuracy of the 7-8-9 Rule for endotracheal tube placement in the neonate. J Perinatol. 2006;26(6):333-336. doi:10.1038/sj.jp.7211503.
  3. Kempley ST, Moreiras JW, Petrone FL. Endotracheal tube length for neonatal intubation. Resuscitation. 2008;77(3):369-373. doi:10.1016/j.resuscitation.2008.02.002.
  4. Anderson J, Leonard D, Braner DAV, Lai S, Tegtmeyer K. Videos in Clinical Medicine. Umbilical Vascular Catheterization. Vol 359. 2008:e18. doi:10.1056/NEJMvcm0800666.
  5. Association AAOPAAH. Textbook of Neonatal Resuscitation. 2016.
  6. Caraciolo J Fernandes MD. Physiologic transition from intrauterine to extrauterine life. UpToDate.
  7. Sadler TW. Langman’s Medical Embryology. Lippincott Williams & Wilkins; 2011.
  8. Perlman JM, Wyllie J, Kattwinkel J, et al. Part 7: Neonatal Resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. In: Vol 132. American Heart Association, Inc.; 2015:S204-S241. doi:10.1161/CIR.0000000000000276.

Diplopia Applied

Brief H&P:

A young male with no past medical history presents to the emergency department after assault. He was punched multiple times in the face and has since noted double vision, worse with upward gaze. Examination revealed right peri-orbital edema with associated limitation to upward gaze.

Imaging:

entrapment_1
entrapment_1
entrapment_2
entrapment_2
entrapment_3
entrapment_3
entrapment_4
entrapment_4
entrapment_5
entrapment_5
entrapment_6
entrapment_6
entrapment_7
entrapment_7
entrapment_8
entrapment_8
entrapment_9
entrapment_9

CT Maxillofacial Non-contrast

Inferior orbital wall fracture with herniation of the inferior rectus muscle.

Extraocular Muscle Actions:

Extra-ocular movement actions.

Affected Anatomic Sites in Diplopia:

Coordinated eye positioning is affected by voluntary movements (requiring cranial nerve control for conjugate eye movements), vergence (for depth adjustments), as well as reflexive adjustments for head movement (requiring vestibular input). As with any motor activity, neuromuscular control must be normal with unrestricted movement of the globe within the orbit.

Sites causing diplopia

Algorithm for the Evaluation of Diplopia:

Diplopia has been explored previously on ddxof. The earlier algorithm was focused on identifying the paretic nerve. This algorithm uses features of the history and physical examination to identify potential etiologic causes of diplopia.

Algorithm for the Evaluation of Diplopia

References:

  1. Rucker JC, Tomsak RL. Binocular diplopia. A practical approach. Neurologist. 2005;11(2):98-110. doi:10.1097/01.nrl.0000156318.80903.b1.
  2. Friedman DI. Pearls: diplopia. Semin Neurol. 2010;30(1):54-65. doi:10.1055/s-0029-1244995.
  3. Alves M, Miranda A, Narciso MR, Mieiro L, Fonseca T. Diplopia: a diagnostic challenge with common and rare etiologies. Am J Case Rep. 2015;16:220-223. doi:10.12659/AJCR.893134.
  4. Dinkin M. Diagnostic approach to diplopia. Continuum (Minneap Minn). 2014;20(4 Neuro-ophthalmology):942-965. doi:10.1212/01.CON.0000453310.52390.58.
  5. Marx J, Walls R, Hockberger R. Rosen’s Emergency Medicine – Concepts and Clinical Practice. 8 ed. Elsevier Health Sciences; 2013:176-183.
  6. Nazerian P, Vanni S, Tarocchi C, et al. Causes of diplopia in the emergency department: diagnostic accuracy of clinical assessment and of head computed tomography. Eur J Emerg Med. 2014;21(2):118-124. doi:10.1097/MEJ.0b013e3283636120.
  7. Low L, Shah W, MacEwen CJ. Double vision. BMJ. 2015;351:h5385. doi:10.1136/bmj.h5385.
  8. Danchaivijitr C, Kennard C. Diplopia and eye movement disorders. J Neurol Neurosurg Psychiatry. 2004;75 Suppl 4:iv24-iv31. doi:10.1136/jnnp.2004.053413.
  9. Huff JS, Austin EW. Neuro-Ophthalmology in Emergency Medicine. Emerg Med Clin North Am. 2016;34(4):967-986. doi:10.1016/j.emc.2016.06.016.

Cervical Spine Injuries

Brief H&P

A young patient with no past medical history is brought in by ambulance after a high-speed motor vehicle accident. Trauma survey demonstrates absent motor/sensation in bilateral lower extremities with sensory level at T3-T4. Computed tomography of the cervical spine was obtained and is shown below.

Imaging

c-spine_01
c-spine_01
c-spine_02
c-spine_02
c-spine_03
c-spine_03
c-spine_04
c-spine_04
c-spine_05
c-spine_05
c-spine_06
c-spine_06
c-spine_07
c-spine_07
c-spine_08
c-spine_08
c-spine_09
c-spine_09
c-spine_10
c-spine_10
c-spine_11
c-spine_11
c-spine_12
c-spine_12
c-spine_13
c-spine_13
c-spine_14
c-spine_14
c-spine_15
c-spine_15

CT C-Spine

Fracture-dislocation at C6-C7 and C7-T1 with comminuted burst fracture to C7 and locked facet joint with resultant anterior migration of C6 over C7, unstable cervical spine fracture.

Anatomy

Atlas and Axis
Axis (C2 vertebra)
C-spine Lateral View
C-spine Radiographs
Skull base and C1/C2
Vertebral Columns

Flexion

C1/C2

Wedge fracture

  • Stretch on strong nuchal ligament transmits force to vertebral body.
  • Stability: Generally stable unless >50% compression or multiple contiguous.

Flexion-teardrop fracture

  • Severe flexion force, avulsion of fragment of anterior/inferior portion of vertebral body.
  • Stability: Unstable, involves anterior/posterior ligamentous disruptions.

Clay shoveler’s fracture

  • Oblique fracture of spinous process of lower cervical spine.
  • Stability: Stable

Subluxation

  • Pure ligamentous injury without associated fracture.
  • Imaging: Widening of interspinous and intervertebral spaces on lateral.
  • Stability: Potentially unstable.

Bilateral facet dislocation

  • Anterior displacement of spine above level of injury caused by dislocation of upper inferior facet from lower superior facet.
  • Imaging: Anterior displacement greater than ½ AP diameter of vertebral body.
  • Stability: Unstable

Odontoid process fracture

  • Head trauma with shear force directed at odontoid.
  • Sub-classification: Type I (above transverse ligament), type II (odontoid base), type III (extension to body of C2)
  • Stability: Types II, III unstable.

Flexion/Rotation

Rotary atlantoaxial dislocation

  • Imaging: Open-mouth odontoid, asymmetric lateral masses of C1.
  • Stability: Unstable

Unilateral facet dislocation

  • Flexion and rotation centered around single facet results in contralateral facet dislocation.
  • Imaging: AP radiograph shows spinous processes above dislocation displaced from midline, lateral radiograph shows anterior displacement of lower vertebra (less than ½ AP diameter of vertebral body).

Extension

Posterior neural arch fracture (C1)

  • Forced extension causes compressive force on posterior elements of C1 between occiput and C2.
  • Stability: Unstable

Hangman’s fracture (spondylolysis C2)

  • Abrupt deceleration causes fracture of bilateral pedicles of C2, potentially with associated subluxation. Rarely associated with SCI due to large diameter of neural canal at C2.
  • Imaging: May be associated with retropharyngeal space edema.
  • Stability: Unstable

Extension-teardrop fracture

  • Abrupt extension (ex. diving) results in stretch along anterior longitudinal ligament with avulsion of anterior/inferior fragment of vertebral body (usually C5-C7).
  • Imaging: May be radiographically similar to flexion-teardrop fracture.
  • Complications: Central cord syndrome
  • Stability: Unstable in extension

Vertical compression

Burst fracture

  • Force applied from above or below causes transmission of force to intervertebral disc and vertebral body.
  • Imaging: Comminuted vertebral body, >40% compression of anterior vertebral body.
  • Complications: Fracture fragments may impinge on spinal cord.
  • Stability: Stable

Jefferson fracture (C1)

  • Vertical force transmitted from occipital condyles to superior articular facets of atlas, resulting in fractures of anterior and posterior arches.
  • Imaging: Widening of predental space. Open-mouth odontoid view may reveal bilateral offset distance of >7mm between lateral masses of C1/C2.
  • Stability: Unstable

Cervical Spine Imaging Decision Rule (Canadian)

Algorithm for the Evaluation of Cervical Spine Trauma (Canadian)

References:

  1. MD RK, MD BED, CAQ-SM KHM, MD WF. Emergency Department Evaluation and Treatment of Cervical Spine Injuries. Emergency Medicine Clinics of NA. 2015;33(2):241-282. doi:10.1016/j.emc.2014.12.002.
  2. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res. 1984;(189):65-76.
  3. Munera F, Rivas LA, Nunez DB, Quencer RM. Imaging evaluation of adult spinal injuries: emphasis on multidetector CT in cervical spine trauma. Radiology. 2012;263(3):645-660. doi:10.1148/radiol.12110526.

Dysphagia

Brief H&P

A 47-year-old male with no known medical history presents with dysphagia. He reports 3 weeks of symptoms, describing difficulty predominantly with swallowing solid foods which is aided by the concomitant ingestion of liquids. He points to his throat as the area of discomfort, but has not noted any choking or coughing after attempts at swallowing. He occasionally suffers from “heartburn”, describing a burning sensation in his chest provoked by certain foods and was previously prescribed omeprazole which he has not taken for several years. He denies any prior surgeries, tobacco or alcohol use, relevant family history or similar symptoms in the past.

Physical examination was unrevealing, demonstrating a normal neurological examination, normal phonation, normal oropharynx and no appreciable neck masses. The patient was observed to comfortably swallow water.

He was discharged with gastroenterology follow-up and ultimately underwent esophagogastroduodenoscopy which demonstrated narrowing of the distal esophagus suggestive of a peptic stricture. Dilation was deferred in favor of resumption of proton pump inhibitor therapy.


Types of Dysphagia1,2

Oropharyngeal3
Characterized by difficulty initiating swallowing and accompanied by choking/coughing, nasopharyngeal regurgitation or aspiration.
Involved anatomy: Tongue, muscles of mastication, soft palate (elevation to close nasopharynx), suprahyoid muscles (elevate larynx), epiglottis (occlude airway), cricopharyngeus muscle (release upper esophageal sphincter). Neurological control predominantly coordinated by cranial nerves (V, VII, IX, X, XII)
Esophageal4
Delayed after initiating swallowing and characterized by a sensation of food bolus arresting in transit.
Involved anatomy: Skeletal and smooth muscle along the esophagus and lower esophageal sphincter. Neurological control predominantly coordinated by medulla

Important Historical Features5,6

  • Difficulty with liquids suggests motility problem
  • Difficulty with solids only or solids progressing to liquids suggests mechanical obstruction
  • Identify a history of head and neck surgery or radiation therapy
  • Identify a personal or family history of connective tissue disorder (scleroderma, RA, SLE) which may be associated with esophageal dysmotility
  • Review home medications (NSAID, bisphosphonate, potassium chloride, ferrous sulfate)
  • Immunocompromised patients are at risk for infectious esophagitis (Candida, CMV, HSV) which are generally associated with odynophagia
  • A history of heartburn may be associated with reflux-mediated complications such as erosive esophagitis, peptic stricture, and adenocarcinoma of the esophagus
  • Young patients are more likely to be affected by eosinophilic esophagitis
  • Patient localization of site of obstruction is generally accurate, patients are more accurate at localizing proximal than distal obstructions7

Algorithm for the Evaluation of Dysphagia8

Algorithm for the Evaluation of Dysphagia

Management9-11

Patients who are safely tolerating oral intake can be referred for outpatient gastroenterology evaluation. Admission should be considered for patients at high-risk for aspiration.

References

  1. Spieker MR. Evaluating dysphagia. Am Fam Physician. 2000;61(12):3639-3648.
  2. Abdel Jalil AA, Katzka DA, Castell DO. Approach to the patient with dysphagia. Am J Med. 2015;128(10):1138.e17-.e23. doi:10.1016/j.amjmed.2015.04.026.
  3. Shaker R. Oropharyngeal Dysphagia. Gastroenterol Hepatol (N Y). 2006;2(9):633-634.
  4. Galmiche JP, Clouse RE, Bálint A, et al. Functional esophageal disorders. Gastroenterology. 2006;130(5):1459-1465. doi:10.1053/j.gastro.2005.08.060.
  5. McCullough GH, Martino R. Clinical Evaluation of Patients with Dysphagia: Importance of History Taking and Physical Exam. In: Manual of Diagnostic and Therapeutic Techniques for Disorders of Deglutition. New York, NY: Springer New York; 2012:11-30. doi:10.1007/978-1-4614-3779-6_2.
  6. Cook IJ. Diagnostic evaluation of dysphagia. Nat Clin Pract Gastroenterol Hepatol. 2008;5(7):393-403. doi:10.1038/ncpgasthep1153.
  7. Wilcox CM, Alexander LN, Clark WS. Localization of an obstructing esophageal lesion. Is the patient accurate? Dig Dis Sci. 1995;40(10):2192-2196.
  8. Trate DM, Parkman HP, Fisher RS. Dysphagia. Evaluation, diagnosis, and treatment. Prim Care. 1996;23(3):417-432.
  9. American Gastroenterological Association medical position statement on management of oropharyngeal dysphagia. Gastroenterology. 1999;116(2):452-454. doi:10.1016/S0016-5085(99)70143-5.
  10. Spechler SJ. American Gastroenterological Association medical position statement on treatment of patients with dysphagia caused by benign disorders of the distal esophagus. Gastroenterology. 1999;117(1):229-232. doi:10.1016/S0016-5085(99)70572-X.
  11. Varadarajulu S, Eloubeidi MA, Patel RS, et al. The yield and the predictors of esophageal pathology when upper endoscopy is used for the initial evaluation of dysphagia. Gastrointest Endosc. 2005;61(7):804-808.

 

Kawasaki Disease

Brief H&P:

An 8-month old male is brought to the emergency department with fever. He has had four days of fever (temperature ranging from 37-40°C), rash on trunk and extremities, white-colored tongue discoloration, and irritability with decreased oral intake. Temperature on presentation was 39.4°C, examination revealed an erythematous maculopapular rash on the extremities and trunk including soles of the feet. Mucous membrane involvement was noted with oropharyngeal erythema and bilateral conjunctival injection. Neck examination demonstrated right-sided cervical adenopathy.

Labs:

  • WBC: 23.4 (N: 59%, B: 21%)
  • ESR: 100mm/hr
  • CRP: 7.59mg/dL
  • Albumin: 3.3g/dL
  • AST/ALT: 78U/L, 65U/L
  • UA: 7WBC, no bacteria

Hospital Course

The patient was admitted with a diagnosis of Kawasaki Disease and was treated with IVIG and high-dose aspirin. The patient demonstrated marked improvement with treatment and had a normal echocardiogram. He was discharged on hospital day three.

Epidemiology1,2

  • Age: 6 months to 5 years
  • Northeast Asian
  • Possible heritable component
  • Seasonal (winter/spring)

Course

  • Acute febrile (T > 39°C refractory to anti-pyretics)
  • Subacute (coronary vasculitis)
  • Convalescent

Diagnosis

  • Fever >5d
  • Criteria (4/5)
    • Conjunctivitis (bilateral, non-exudative)
    • Oropharynx changes (strawberry tongue, erythema, perioral)
    • Cervical lymphadenopathy (unilateral, >1.5cm)
    • Rash
    • Extremity changes (erythema, edema, palm/sole involvement)
  • Incomplete (2-3 criteria)

Labs

  • CBC: Elevated WBC (neutrophil predominant)
  • Urinalysis: Sterile pyuria
  • Acute phase reactants: Elevated ESR (>40-60mm/hr), CRP (>3.0-3.5mg/dL)
  • CMP: Hyponatremia, hypoalbuminemia, hypoproteinemia, elevated transaminases
  • ECG: AV block, ischemia/infarction (aneurysm/thrombosis)
  • Echocardiography: Decreased LVEF, MR, pericardial effusion

Management

  • Hospital admission
  • IVIG (2g/kg)
  • Aspirin (80mg/kg/day)

Algorithm for the Evaluation of Kawasaki and Incomplete Kawasaki Disease3,4

Algorithm for the Evaluation of Kawasaki and Incomplete Kawasaki Disease

References:

  1. Shiari R. Kawasaki Disease; A Review Article. Arch Pediatr Infect Dis. 2014;2(1 SP 154-159).
  2. Yu JJ. Diagnosis of incomplete Kawasaki disease. Korean J Pediatr. 2012;55(3):83-87. doi:10.3345/kjp.2012.55.3.83.
  3. Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics. 2004;114(6):1708-1733. doi:10.1542/peds.2004-2182.
  4. Yellen ES, Gauvreau K, Takahashi M, et al. Performance of 2004 American Heart Association recommendations for treatment of Kawasaki disease. Pediatrics. 2010;125(2):e234-e241. doi:10.1542/peds.2009-0606.

Bradycardia

Brief H&P:

A 38 year-old male with no medical history presents to the emergency department with abdominal pain. He had one episode each of non-bloody emesis followed by watery, non-bloody diarrhea and cited several sick contacts at home with similar symptoms. Vital signs were notable for bradycardia with a heart rate ranging from 38-46bpm though he was normotensive. The examination including abdominal examination was benign. A 12-lead electrocardiogram was obtained which demonstrated sinus bradycardia. The patient was asymptomatic during episodes of bradycardia and his heart rate responded appropriately during activity and on further history reported that he was an endurance athlete and runs multiple marathons each year. He was discharged after symptomatic improvement with anti-emetics.

Bradycardia 1

  • Definition: heart rate <60bpm
  • Sinus rhythm: upright P-wave in I, II, aV; inverted P-wave in aVR

Electrocardiographic Findings 1-4

  • Sinus bradycardia
    • Potentially asymptomatic and present in healthy individuals
  • Sinoatrial node dysfunction (sick sinus syndrome, SSS) 5,6
    • Sinus bradycardia
    • Sinus arrest
    • Tachy-brady syndrome (sinus bradycardia/arrest interspersed with SVT)
  • Atrioventricular block
    • 1st degree: PR prolongation, rarely symptomatic
    • 2nd degree: Intermittent interruption of conduction of atrial impulses to ventricles
      • Type 1: progressive PR prolongation leading to interrupted conduction
      • Type 2: fixed PR interval with interrupted conduction
    • 3rd degree: atrioventricular dissociation
  • Slow atrial fibrillation
    • Irregular RR interval without recognizable P-wave

Epidemiology7

  • Analysis of 277 patients presenting to the emergency department with “compromising” bradycardia.
  • Symptoms
    • Syncope (33%)
    • Dizziness (22%)
    • Angina (17%)
    • Dyspnea/Heart Failure (11%)
  • ECG
    • High-grade AV block (48%)
    • Sinus bradycardia (17%)
    • Sinus arrest (15%)
    • Slow atrial fibrillation (14%)
  • Cause
    • Primary (49%)
    • Drug (21%)
    • Ischemia/Infarction (14%)
    • Pacemaker failure (6%)
    • Intoxication (6%)
    • Electrolyte disorder (4%)

Important Historical Features8,9

  • Fever/travel
  • Chest pain
  • Cold intolerance, weight gain
  • Headache, AMS, trauma
  • Abdominal pain/distension
  • Medication changes

Important Examination Findings8,9

  • Perfusion (temperature, capillary refill)
  • Presence of fistula or hemodialysis catheter
  • Existing device (malfunction)

Workup8,9

  • ECG
  • Continuous telemetry monitoring
  • Labs
    • Potassium
    • Digoxin level
    • TFT
    • Infection titers (RPR, Lyme)
    • Cardiac enzymes

Management8,10

  • Unstable
    • Airway
    • Atropine 0.5mg IV q3-5min (maximum 3mg)
    • Dopamine/epinephrine infusion
    • Temporary pacemaker (transcutaneous, transvenous) with blood-pressure preserving sedation
    • Admission and evaluation for permanent pacemaker placement
  • Stable (outpatient evaluation)
    • Event monitor
    • Stress test (chronotropic incompetence)

Algorithm for the Evaluation and Management of Bradycardia

Algorithm for the evaluation and management of bradycardia

References

  1. Mangrum JM, DiMarco JP. The evaluation and management of bradycardia. N Engl J Med. 2000;342(10):703-709. doi:10.1056/NEJM200003093421006.
  2. Ufberg JW, Clark JS. Bradydysrhythmias and atrioventricular conduction blocks. Emergency Medicine Clinics of NA. 2006;24(1):1–9–v. doi:10.1016/j.emc.2005.08.006.
  3. Hayden GE, Brady WJ, Pollack M, Harrigan RA. Electrocardiographic manifestations: diagnosis of atrioventricular block in the Emergency Department. J Emerg Med. 2004;26(1):95-106. doi:10.1016/j.jemermed.2003.10.001.
  4. Da Costa D, Brady WJ, Edhouse J. Bradycardias and atrioventricular conduction block. BMJ. 2002;324(7336):535-538.
  5. Semelka M, Gera J, Usman S. Sick sinus syndrome: a review. Am Fam Physician. 2013;87(10):691-696.
  6. Ewy GA. Sick sinus syndrome: synopsis. J Am Coll Cardiol. 2014;64(6):539-540. doi:10.1016/j.jacc.2014.05.029.
  7. Sodeck GH, Domanovits H, Meron G, et al. Compromising bradycardia: management in the emergency department. Resuscitation. 2007;73(1):96-102. doi:10.1016/j.resuscitation.2006.08.006.
  8. Deal N. Evaluation and management of bradydysrhythmias in the emergency department. Emergency Medicine Practice. 2013;15(9):1–15–quiz15–6.
  9. Demla V, Rohra A. Emergency Department Evaluation and Management of Bradyarrhythmia. Hospital Medicine Clinics. 2015;4(4):526-539. doi:https://doi.org/10.1016/j.ehmc.2015.06.009.
  10. Brady WJ, Harrigan RA. Evaluation and management of bradyarrhythmias in the emergency department. Emergency Medicine Clinics of NA. 1998;16(2):361-388.

Pediatric Head Trauma

Brief H&P:

A young child, otherwise healthy, is brought to the pediatric emergency department after a fall. The parents report a fall from approximately 2 feet after which the patient cried immediately and without apparent loss of consciousness. Over the course of the day, the patient developed an enlarging area of swelling over the left head. The parents were concerned about a progressive decrease in activity and interest in oral intake by the child, and they were brought to the emergency department for evaluation. Examination demonstrated a well-appearing and interactive child – appropriate for age. Head examination was notable for a 5x5cm hematoma over the left temporoparietal skull with an underlying palpable skull irregularity not present on the contralateral side. Non-contrast head computed tomography was obtained.

Imaging

ct_head_0007_Screen-Shot-2017-06-05-at-4.18.59-PM
ct_head_0007_Screen-Shot-2017-06-05-at-4.18.59-PM
ct_head_0006_Screen-Shot-2017-06-05-at-4.19.02-PM
ct_head_0006_Screen-Shot-2017-06-05-at-4.19.02-PM
ct_head_0005_Screen-Shot-2017-06-05-at-4.19.04-PM
ct_head_0005_Screen-Shot-2017-06-05-at-4.19.04-PM
ct_head_0004_Screen-Shot-2017-06-05-at-4.19.08-PM
ct_head_0004_Screen-Shot-2017-06-05-at-4.19.08-PM
ct_head_0003_Screen-Shot-2017-06-05-at-4.19.10-PM
ct_head_0003_Screen-Shot-2017-06-05-at-4.19.10-PM
ct_head_0002_Screen-Shot-2017-06-05-at-4.19.15-PM
ct_head_0002_Screen-Shot-2017-06-05-at-4.19.15-PM
ct_head_0001_Screen-Shot-2017-06-05-at-4.19.18-PM
ct_head_0001_Screen-Shot-2017-06-05-at-4.19.18-PM
ct_head_0000_Screen-Shot-2017-06-05-at-4.19.22-PM
ct_head_0000_Screen-Shot-2017-06-05-at-4.19.22-PM

CT Head

Fracture of the left temporal and parietal bone with overlying scalp hematoma.

Algorithm for the Evaluation of Pediatric Head Trauma (PECARN)1,2,3

Algorithm for the evaluation of pediatric head trauma

References

  1. Kuppermann N, Holmes JF, Dayan PS, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160-1170. doi:10.1016/S0140-6736(09)61558-0.
  2. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. American Journal of Roentgenology. 2001;176(2):289-296. doi:10.2214/ajr.176.2.1760289.
  3. Schonfeld D, Bressan S, Da Dalt L, Henien MN, Winnett JA, Nigrovic LE. Pediatric Emergency Care Applied Research Network head injury clinical prediction rules are reliable in practice. Archives of Disease in Childhood. 2014;99(5):427-431. doi:10.1136/archdischild-2013-305004.

Acute Urinary Retention

Brief H&P:

A 62 year-old male with no significant medical history, presented to the emergency department with several days of vomiting. Examination showed suprapubic fullness with tenderness to palpation and a bedside ultrasound was performed:

RUQ
RUQ

RUQ

Right upper quadrant ultrasound with moderate hydronephrosis.

LUQ
LUQ

LUQ

Left upper quadrant ultrasound with moderate hydronephrosis.

Bladder
Bladder

Bladder

Relatively non-distended bladder.

Bladder Volume
Bladder Volume

Bladder Volume

Post-void bladder volume.

Ultrasound revealed moderate bilateral hydronephrosis with a relatively non-distended bladder. Labs were notable for new renal failure and the patient was admitted for continued evaluation. He was ultimately diagnosed with idiopathic retroperitoneal fibrosis with bilateral distal ureteral obstruction requiring stenting.

Anatomy of Acute Urinary Retention:

Differential Diagnosis of Acute Urinary Retention:1,2,3

Algorithm for the Evaluation of Acute Urinary Retention

Hypotension

Brief H&P:

A 50 year-old male with a history of colonic mucinous adenocarcinoma on chemotherapy presented with a chief complaint of “vomiting”. He was unwilling to provide further history, repeating that he had vomited blood prior to presentation. His initial vital signs were notable for tachycardia. Physical examination showed some dried vomitus, brown in color, at the nares and lips; left upper quadrant abdominal tenderness to palpation; and guaiac-positive stool. Point-of-care hemoglobin was 3g/dL below the most recent measure two months prior. As his evaluation progressed, he developed hypotension and was transfused two units of uncrossmatched blood with adequate blood pressure response – he was started empirically on broad-spectrum antibiotics for an intra-abdominal source. Notable laboratory findings included a normal hemoglobin/hematocrit, acute kidney injury, and elevated anion gap metabolic acidosis presumably attributable to serum lactate of 10.7mmol/L. Computed tomography of the abdomen and pelvis demonstrated pneumoperitoneum with complex ascites concerning for bowel perforation. The patient deteriorated, was intubated, started on vasopressors and admitted to the surgical intensive care unit. The initial operative report noted extensive adhesions and perforated small bowel with feculent peritonitis. He has since undergone multiple further abdominal surgeries and remains critically ill.

Imaging

IM-0001-0032
IM-0001-0032
IM-0001-0033
IM-0001-0033
IM-0001-0034
IM-0001-0034
IM-0001-0035
IM-0001-0035
IM-0001-0036
IM-0001-0036
IM-0001-0037
IM-0001-0037
IM-0001-0038
IM-0001-0038
IM-0001-0039
IM-0001-0039
IM-0001-0040
IM-0001-0040
IM-0001-0041
IM-0001-0041
IM-0001-0042
IM-0001-0042
IM-0001-0043
IM-0001-0043
IM-0001-0044
IM-0001-0044
IM-0001-0045
IM-0001-0045
IM-0001-0046
IM-0001-0046
IM-0001-0047
IM-0001-0047
IM-0001-0048
IM-0001-0048
IM-0001-0049
IM-0001-0049
IM-0001-0050
IM-0001-0050

CT Abdomen/Pelvis

Free air is seen diffusely in the non-dependent portions of the abdomen: in the anterior abdomen and pelvis, inferior to the diaphragm, and in the perisplenic region. There is complex free fluid in the abdomen.

Algorithm for the Evaluation of Hypotension1

This process for the evaluation of hypotension in the emergency department was developed by Dr. Ravi Morchi. In the case above, a systematic approach to the evaluation of hypotension using ultrasonography and appropriately detailed physical examination may have expedited the patient’s care. The expertly-designed algorithm traverses the cardiovascular system, halting at evaluable checkpoints that may contribute to hypotension.

  1. The process begins with the cardiac conduction system to identify malignant dysrhythmias (bradycardia, or non-sinus tachycardia >170bpm), which, in unstable patients are managed with electricity.
  2. The next step assesses intravascular volume with physical examination or bedside ultrasonography of the inferior vena cava. Decreased right atrial pressure (whether due to hypovolemia, hemorrhage, or a distributive process) is evidenced by a small and collapsible IVC. If hemorrhage is suspected, further ultrasonography with FAST and evaluation of the abdominal aorta may identify intra- or retroperitoneal bleeding.
  3. If a normal or elevated right atrial pressure is identified, evaluate for dissociation between the RAP and left ventricular end-diastolic volume. This is typically caused by a pre- or intra-pulmonary obstructive process such as tension pneumothorax, cardiac tamponade, massive pulmonary embolism, pulmonary hypertension, or elevated intra-thoracic pressures secondary to air-trapping. Thoracic ultrasonography can identify pneumothorax, pericardial effusion, or signs of elevated right ventricular systolic pressures (RV:LV, septal flattening).
  4. Assuming adequate intra-vascular volume is arriving at the left ventricle, rapid echocardiography can be used to provide a gross estimate of cardiac contractility and point to a cardiogenic process. If there is no obvious pump failure, auscultation may reveal murmurs that would suggest systolic output is refluxing to lower-resistance routes (ex. mitral insufficiency, aortic insufficiency, or ventricular septal defect).
  5. Finally, if the heart rate is suitable, volume deficits are not grossly at fault, no obstructive process is suspected, and cardiac contractility is adequate and directed appropriately through the vascular tree, the cause may be distributive. Physical examination may reveal dilated capillary beds and low systemic vascular resistance.

Algorithm for the Evaluation of Hypotension

Guided Lecture

EM Ed
Watch “The Transiently Hypotensive Patient: Who Cares?” from EM Ed. In this lecture Dr. Basrai reviews the diagnostic pathway for a patient who presents with transient hypotension.

References

  1. Morchi R. Diagnosis Deconstructed: Solving Hypotension in 30 Seconds. Emergency Medicine News. 2015.

Wellens Syndrome

Case Presentation

49M with a history of hypertension who presented to his primary physician for routine follow-up and was referred to the ED for an abnormal ECG. He denied chest pain, shortness of breath, or any limitation to baseline exercise tolerance. His vital signs were notable for systolic hypertension and his examination was unremarkable. A chest x-ray showed no acute cardiopulmonary findings. His initial ECG demonstrated a biphasic T-wave in V2 and deep, symmetric T-wave inversions in V3-V6. His initial serum troponin was markedly elevated at 3.499. He was admitted and urgent coronary angiography revealed proximal LAD stenosis (70%), mid-LAD stenosis (85%) and 1st right posterolateral stenosis (85%) which were stented. He was discharged on post-procedure day one and has remained asymptomatic at outpatient follow-up.

Presentation ECG
Presentation ECG

Presentation ECG

Biphasic T-wave in V2, deep and symmetric T-wave inversions in V3-V4

Post-Catheterization ECG
Post-Catheterization ECG

Post-Catheterization ECG

Resolution of biphasic T-wave and T-wave inversions

History1

Initially described in 1982 where a subset of patients who did poorly with medical management of “impending myocardial infarction” (essentialy unstable angina) were found to have characteristic ECG changes. These patients were noted to be at increased risk for extensive anterior wall myocardial infarctions due to proximal LAD stenosis.

Wellens ECG patterns

Criteria2,3

  1. History of chest pain
  2. Normal or slightly-elevated cardiac enzymes
  3. No precordial Q-waves
  4. Isoelectric or <1mm ST-segment elevation
  5. Pattern present in pain-free state
  6. Type A (25%): Biphasic T-wave in V2/V3
  7. Type B (75%): Deep, symmetrically inverted T-waves in V2/V3

Clinical Significance3

Wellens Syndrome (or LAD coronary T-wave syndrome) represents a “pre-infarction” stage of coronary artery disease manifested by critical LAD stenosis. The natural history includes progression to extensive anterior wall myocardial infarction, often associated with severe left ventricular systolic dysfunction, cardiogenic shock and death. These changes may be mistaken for “non-specific” T-wave changes (which in the presence of a non-concerning history and typically non-elevated cardiac markers) may lead providers to inappropriate dispositions such a stress testing which is contraindicated. Recognition of this pattern and its appropriate management (urgent coronary angiography) is critical.

Case Summary

The case presented above is atypical. The patient had no history of chest pain and cardiac enzymes were significantly elevated – two features which are uncommon in Wellens Syndrome. However, the patient’s elevated cardiac biomarkers led to admission and angiography with identification of the characteristic proximal LAD stenosis (and other disease).

References:

  1. de Zwaan C, Bär FW, Wellens HJ. Characteristic electrocardiographic pattern indicating a critical stenosis high in left anterior descending coronary artery in patients admitted because of impending myocardial infarction. Am Heart J. 1982;103(4 Pt 2):730-736.
  2. Tandy TK, Bottomy DP, Lewis JG. Wellens’ syndrome. YMEM. 1999;33(3):347-351.
  3. Rhinehardt J, Brady WJ, Perron AD, Mattu A. Electrocardiographic manifestations of Wellens’ syndrome. American Journal of Emergency Medicine. 2002;20(7):638-643. doi:10.1053/ajem.2002.34800.
  4. Mead N, O Keefe K. Wellen′s Syndrome: An Ominous EKG pattern. J Emerg Trauma Shock. 2009;2(3):206– doi:10.4103/0974-2700.55347.
  5. Kannan L, Figueredo VM. Images in clinical medicine. Wellens’ syndrome. N Engl J Med. 2015;372(1):66. doi:10.1056/NEJMicm1400946.